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Abstract
In this paper we compute new reaction rates of the Smoluchowski equation
which takes into account correlations. The new rate K = KMF + KC is
the sum of two terms. The first term is the known Smoluchowski rate with
the mean-field approximation. The second takes into account a correlation
between clusters. For this purpose we introduce the average path of a cluster.
We relate the length of this path to the reaction rate of the Smoluchowski
equation. We solve the implicit dependence between the average path and
the density of clusters. We show that this correlation length is the same for
all clusters. Our result depends strongly on the spatial dimension d. The
mean-field term KMF

i,j = (Di + Dj)(rj + ri)
d−2, which vanishes for d = 1

and is valid up to logarithmic correction for d = 2, is the usual rate found
with the Smoluchowski model without correlation (where ri is the radius and
Di is the diffusion constant of the cluster). We compute a new rate: the
correlation rate KC

i,j = (Di + Dj)(rj + ri)
d−1M

(
d−1
df

)
is valid for d � 1(where

M(α) = ∑+∞
i=1 iαNi is the moment of the density of clusters and df is the

fractal dimension of the cluster). The result is valid for a large class of diffusion
processes and mass–radius relations. This approach confirms some analytical
solutions in d = 1 found with other methods. We also show Monte Carlo
simulations which illustrate some exact new solvable models.

PACS number:

(Some figures in this article are in colour only in the electronic version)

There are different microscopic processes which lead to the model with the Smoluchowski
equation. A comprehensive review can be found in [1] and the derivation of the reaction rate
can be found in [2] with the mean-field approach. Particles can be injected into the system
during time evolution [3–7], the injection of particles can be periodic in time [8, 9]. For a very
anisotropic surface the model is practically one dimensional [10, 11]. Hence we will assume
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the most general model for an arbitrary space dimension d and flux F(t) of particles injected
into the system. Our model has two properties:

(1) Brownian diffusion: clusters of mass k diffuse with a Brownian motion with a diffusion
constant Dk .

(2) Irreversible aggregation: clusters interact through a contact process, namely two particles
in contact aggregate irreversibly.

The Smoluchowski approach disregards the microscopic density nk(t, r) of a cluster
of mass k and considers the macroscopic density, i.e. space average density: Nk(t) =

1∫
d(d)r

∫
d(d)rnk(t, r). The Smoluchowski equation for the density of a cluster is

dNk

dt
= 1

2

∑
i+j=k

Ki,jNiNj − Nk

+∞∑
i=1

Ki,kNi + F(t)δk,1, (1)

where Ki,j is the reaction rate and δi,j is the Kronecker symbol. We assume the following
initial conditions: if there is no source F(t) = 0 we have Ni(t = 0) = δ1,i , otherwise with a
source we have Ni(t = 0) = 0. A useful quantity is the moment of order q:

Mq(t) =
+∞∑
i=1

iqNi.

The time evolution of the moment is

Ṁq(t) = 1

2

∑
i,j

Ki,j ((i + j)q − iq − jq)NiNj + F(t).

For q = 1 the moment is the total coverage M1, i.e. the total mass, and for q = 0 it is the total
cluster density M0. Without source the total mass is conserved M1(t) = M1(0) = N1(0) = 1.
The calculation of the reaction rate depends on some physical assumptions. The mean-field
theory assumes that we can exchange the many-body problem by a one-body problem with a
convenient external field. For this purpose we define asymmetric rates, the rate that a cluster
of mass i aggregates with the cluster j : Ki→j (the reaction rate is a symmetric function of
Ki→j ). Following [12], [10] (we chose a characteristic length instead of a characteristic life
time used in [10]) and dimension analysis, we define the average length of a cluster with the
following equation:

∂Ni

∂t
∼ DiNi

ξ 2
i

= Ni

+∞∑
j=0

Ki→jNj , (2)

the life time τi of the cluster is defined by the relation ξi = √
Diτi [10]. We follow the

mean-field approach [2]; we choose an arbitrary particle ni(r, t) and the microscopic equation
of the cluster reads [12]

Ni − ni

ξ 2
i

= �(d)ni, (3)

where �(d) is the symmetrical Laplace operator in d dimensions:

�(d) = ∂2

∂r2
+

d − 1

r

∂

∂r
.

The fluctuations (Ni − ni) around the average value Ni are proportional to the variation of the
microscopic density �(d)ni . We consider a spherically symmetric solution of equation (3).
The external field is the same as for the mean-field approach [2] , the boundary conditions
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ni(r → +∞) = Ni and n(r = rj ) = 0 express the convenient external field. Physically it
means that close to a cluster the microscopic density vanishes, i.e. we have a perfect sink and
far away from a sink the microscopic density is close to the average density (we assume an
early stage of clustering). The stationary spherically symmetric solution of the equation (3)
(we chose as origin the contact between the cluster i and the point-like cluster j ) reads [13]

ni(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ni

(
1 − exp

(
− r − rj

ξi

))
for d = 1

Ni

(
1 −

K0
(

r
ξi

)
K0

( rj

ξi

)
)

for d = 2

Ni

(
1 −

rj exp
(− r−rj

ξi

)
r

)
for d = 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where K0 is the modified Bessel function [14]. The reaction rates are proportional to the flux
of cluster i into a cluster j [2]

∫
j

drj
Di

Ni

∂ni

∂r
|r=rj

, then

Ki→j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Di

ξi

for d = 1

Dirj

ξi

K1
( rj

ξi

)
K0

( rj

ξi

) ∼ Di

(
1 +

rj

ξi

)
for d = 2

Di

(
rj +

r2
j

ξi

)
for d = 3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

We have used the asymptotic expansion of the modified Bessel Function xK1(x)

K0(x)
∼ 1 + x for

x → +∞ [14](on length scale of the order ξi � rj , i.e. x → 0 we have a logarithmic behavior
xK1(x)

K0(x)
∼ − 1

ln(x/2)
which is typical at the critical dimension d = 2).

The rate for all dimensions is formally

Ki→j = Di

(
rd−2
j +

rd−1
j

ξi

)
. (4)

Equation (4) contains two terms. The first term rd−2
j , which is (strictly speaking) valid only for

d � 3, we call the mean-field term. The second term which is valid only for d � 2, contains
the correlation, implicitly defined in ξi , we call the correlation term. Equation (4) is also valid
for d = 1 if we put rd−2

j = 0. One then combines equation (4) with equation (2), we get an
equation of the second order on ξi :

ξ 2
i

∑
j

rd−2
j Nj + ξi

∑
j

rd−1
j Nj − 1 = 0. (5)

The approximate solution, for a large time scale where the correlation length is short, i.e.
ξi � rj , is

ξi = 1∑
j rd−1

j Nj

.

Note that the average length ξi is independent of the mass i. It is on average the inverse of an
effective coverage∑

j

rd−1
j Nj

3
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and the life time τi = ξ 2
i

Di
depends on the mass i. We obtain the asymmetric rate

Ki→j = Di

(
rd−2
j + rd−1

j

+∞∑
k=1

rd−1
k Nk

)
.

The symmetrization [2] of the reaction rate leads to

Ki,j = (Di + Dj)

(
(rj + ri)

d−2 + (ri + rj )
d−1

+∞∑
k=1

rd−1
k Nk

)
. (6)

One generally assumes that the gyration radius scales with the mass ri = iα( in appropriate
length units), where α = 1/df is the inverse of the fractal dimension of the boundary of the
cluster( for compact island df = d − 1, and df = 1.72 for diffusion-limited aggregation
process in d = 2 [12]). The effective coverage is for compact islands, M(d−1)/df

is close to
the coverage M1 when d � 1.

From equation (6) we define two rates: the mean-field rate KMF
i,j = (Di + Dj)(rj + ri)

d−2

and the rate with correlation KC
i,j = (Di + Dj)(rj + ri)

d−1Mα(d−1) . The difference between
these both rates is that we exchange a spatial dimension (rj + ri) in the mean-field rate through
a moment Mα(d−1) in the rate with correlation. We have hence a Taylor expansion around the
correlation number Mα(d−1)

ξi
. In d = 1 only the correlation term remains and the rate is

Ki,j = (Di + Dj)M0. (7)

We assume Mα(d−1) → M0 when d → 1, because the scaling effect of the radius of gyration
vanishes in d = 1, i.e. the boundary for an aggregating particle is point-like.

For a time scale larger than tc , defined by Mα(d−1)(tc) ∼ (ri + rj ), the correlations
dominate, hence the reaction rate is essentially

Ki,j = KC
i,j = (Di + Dj)(rj + ri)

d−1Mα(d−1). (8)

We can derive solutions of the Smoluchowski equation with only rate with correlation
equation (8) from known solutions with mean-field rate KMF

i,j = (Di + Dj)(rj + ri)
d−2 in

a special case: without source (F = 0) and with a rate given from equation (8) the solution
of the Smoluchowski equation in d dimensions is equivalent to the solution with the mean-
field rate KMF without source (F = 0), up to a time rescaling dt̃ = Mα(d−1)(t) dt , in d + 1
dimensions.

With our method a large class of processes in d = 1 can be solved analytically.

In order to confirm this approach we present some analytical solutions and numerical
evidence.

(1) The solution of the Smoluchowski equation with Ki,j = 1 and without source (F = 0) is
known analytically [2], Nk ∼ t−2 and M0 ∼ t−1, hence the time rescaling dt̃ = M0(t) dt

leads us to the known solution in d = 1 of the clustering process with mass-independent
diffusion. This solution was found with another method [18] is M0 ∼ t−1/2. Note
that through our method we obtain the asymptotic behavior for all clusters, Nk ∼ t−1

(figure 1) which was not possible with the method used in [18].
(2) With constant source F = const, and Di = 1 we have the following equations:

Ṅk = M0

∑
i+j=k

NiNj − 2NkM
2
0 + δ1,kF and Ṁ0 = −M3

0 + F.

The asymptotic solutions are M0 ∼ F
1
3 (figure 2) and Nk ∼ k− 3

2 (figure 3). For
comparison the solution with the mean-field term [15, 16] in d = 2 is N ∼ F

1
2 and

Nk ∼ k−3/2.
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Figure 1. Cluster density N1 as a function of time (for comparison the red curve is ∼ t−1).

0.01

0.1

Figure 2. Asymptotic value of the total cluster density M0 as a function of the flux F (for
comparison the red line has a slope F 1/3).

(3) For the sake of completeness we present an analytical solution already known: Dk = δ1,k

and source F = const. The solutions that were found with another method in [10] are
N1 ∼ t−1/2 and the total cluster density M0 ∼ t1/4. With our method we obtain the
same rates and therefore the same solution. For comparison the mean-field approach
gives N1 ∼ t−1/3 and M0 ∼ t1/3 which are different to the numerical solution and the
experimental result.

Hence we have shown that this approach leads to the correct description of irreversible
aggregation with Brownian diffusion in one dimension for different models. We hope to find
similar results in d > 1 beyond the time scale where the mean-field rate is valid, i.e. for t � tc.

There are some open questions:

(1) Higher order of the Taylor expansion: can we compute other rates when the correlation
between clusters is more important, i.e. can we obtain the full Taylor expansion around
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1 10

0.01

Figure 3. Asymptotic value of the cluster density Nk as a function of the cluster mass k (for
comparison the straight line ∼ k−3/2).

the correlation parameter Mα(d−1)

ξi
? Perhaps larger correlation effect can be obtained by

modifying the boundary condition of equation (3).
(2) Multiple particles reaction: how can this approach be generalized to systems where the

binding energy is so tight that that binary reaction is negligible and we have to consider
the reaction A1 + · · · + An → B1 + · · · + Bm [19] with an arbitrary n and m?
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